Refine
Document Type
- Article (11)
- Conference Proceeding (6)
- Other (1)
Institute
Language
- English (18)
Keywords
- Biosensor (1)
- Chronoamperometry (1)
- Cycle-olefin polymer (COP) (1)
- Electric potential (1)
- Electrochemical biosensor (1)
- Electrochemical detection (1)
- Electrodes (1)
- Fingers (1)
- Gold (1)
- Hot embossing (1)
An electrochemical study with three redox substances on a carbon based nanogap electrode array
(2020)
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring assensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance incomparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Here we present the highly sensitive detection of dopamine using gold nanogap IDAs with redox-cycling amplification. Through the combination with a facile electrochemical activation and a chronoamperometric multistep protocol fouling of the gold electrode surface can be prevented and a sensitivity of 14 nA μM -1 with excellent linearity up to 10 μM is achieved. The low-cost and reproducible wafer level fabrication process of the nanogap IDAs plays a key role. Electrode and substrate materials can be nearly arbitrarily chosen. Also the gap sizes could be adjusted down to sub-100 nm dimensions with this versatile approach, allowing for very high signal amplification. In comparison to the current gold standard, fastscan cyclic voltammetry (FSCV) with carbon fiber microelectrodes (CFMEs), which suffers from high background currents, no elaborate data processing and high-end electronic equipment is needed. Employing our flexible, easy and inexpensive method, DA monitoring with a short acquisition period and a detection limit less than 200 nM is successfully demonstrated.