Refine
Document Type
- Conference Proceeding (16)
- Article (14)
- Doctoral Thesis (1)
Institute
Is part of the Bibliography
- yes (31)
Keywords
- Laser ablation (3)
- Pump-probe microscopy (2)
- pump-probe (2)
- thin film (2)
- +NPC 372 (1)
- +TEJ 630 (1)
- Ablation efficiency (1)
- Burst mode (1)
- Copper (1)
- Femtosecond phenomena (1)
Investigation of non-uniformly emitting optical fiber diffusers on the light distribution in tissue
(2020)
Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications
(2019)
Ultrashort pulse laser structuring enables direct modification of glass surfaces to generate superhydrophilic properties for anti-fogging applications. This approach makes coatings dispensable and the generated surfaces remain thermally, mechanically, and chemically resistant. However, the laser-generated structures usually cause scattering, which decreases transmission and may disturb the vision through the modified glass in the dry state. The aim of this study was to find a laser-processing strategy to achieve superhydrophilic, anti-fogging properties on glass surfaces with maximum transmission and minimal visual perception of the generated structure. For this purpose, we used an ultrashort-pulsed laser to generate periodic patterns of rippled circles or rough holes with varying pitch. The water contact angle and transmission of the structured glasses were measured as a function of the structured area. It was found that a periodic pattern of holes, which covers less than 1% of the surface, is already sufficient to reach the superhydrophilic state (contact angle < 5°) and provides nearly the same transmission as pristine glass. Pictures of objects imaged through dry, structured glasses, which were placed close to the lens or object, showed in both cases only a minimal decrease of contrast. If this minor drawback can be accepted, this direct laser structuring approach could be an interesting alternative to coating-based techniques and leaves even room to apply additional coatings for the fabrication of multi-functional special glasses.
Interstitial photodynamic therapy (iPDT) treats malignant brain cancer cells by irradiation with low power laser light. The light is guided into the human body by diffuse emitting fibers. This study targets the light distribution of optical diffusers within the brain tissue. It was shown, that by submerging an optical diffuser into human brain phantom, its radiation profile measured in air converges towards a Gaussian distribution with increasing phantom depth. A camera method using digital averaging filters as well as an integrating sphere setup, both, smoothing the diffuser radiation profile were applied onto the evaluated diffuser.
Investigations on mechanical stability of laser machined optical fibre tips for medical application
(2019)
Light delivery is a challenging task, when it comes to medical applications. The light is guided through optical fibers from the light source towards the treatment region. In case of interstitial light application, the light has to be decoupled from the fibre and spread to the surrounding tissue. To reach larger tissue volumes, this can be either obtained by adding a scattering volume to the tip of the fibre, or by directly modifying the optical fibre itself in order to break the total reflection within the fibre core. Such modifications can be either on the fibre surface itself or internally in the fibre core. One approach to obtain the fibre structuring could be laser induced surface roughening using an ultrafast laser source. While using volume scattering as diffusor at the fibre tip is currently the gold standard for non-thermal applications (< 0.3W/cm), the decoupling of high power laser intensities for thermal treatment options is still challenging. Structuring the fibre core itself usually is related with a loss of mechanical stability. As fibre breakage and potential loss within the human body can have serious consequences, the mechanical stability is one of the quality criterion in diffuser manufacturing. Therefore, investigations about the mechanical stability of laser manufactured optical fibre diffusers are needed.
In order to evaluate the mechanical stability, a 4-point as well as a 2-point breaking test were developed. Different fibre diffusers, based on volume or surface scattering, were manufactured using fs-laser ablation techniques and its breaking strengths were investigated.
It could be shown that for surface fibre modifications, the mechanical stability reduces with increasing defect depth. The stability significantly drops when the laser ablation was performed in the thermal energy range. Volume scattering modified fibres only showed a slight reduction in stability compared to un-machined fibres.
In conclusion, internal fibre modification seems to be the most promising method to establish optical fibre diffusers, which are capable of several watts of emission power, while preserving its mechanical strength.