Refine
Year of publication
Document Type
- Conference Proceeding (17)
- Article (15)
- Doctoral Thesis (1)
Institute
Keywords
- Laser ablation (3)
- Pump-probe microscopy (2)
- pump-probe (2)
- thin film (2)
- +NPC 372 (1)
- +TEJ 630 (1)
- Ablation efficiency (1)
- Burst mode (1)
- Copper (1)
- Femtosecond phenomena (1)
The utilization of lasers in dentistry expands greatly in recent years. For instance, fs-lasers are effective for both drilling and caries prevention, while cw-lasers are useful for adhesive hardening. A cutting-edge application of lasers in dentistry is the debonding of veneers. While there are pre-existing tools for this purpose, there is still potential for improvement. Initial efforts to investigate laser assisted debonding mechanisms with measurements of the optical and mechanical properties of teeth and prosthetic ceramics are presented. Preliminary tests conducted with a laser system used for debonding that is commercially available showed differences in the output power set at the systems console to that at specified distances from the handpiece. Furthermore, the optical properties of the samples (human teeth and ceramics) were characterised. The optical properties of the ceramics should closely resemble those of teeth in terms of look and feel, but they also influence the laser assisted debonding technique and thus must be taken into account. In addition first attempts were performed to investigate the mechanical properties of the samples by means of pump-probe-elastography under a microscope. By analyzing the sample surface up to 20 ns after a fs-laser pulse impact, pressure and shock waves could be detected, which can be utilized to determine the elastic constants of specific materials. Together such investigations are needed to shape the basis for a purely optical approach of debonding of veneers utilizing acoustic waves.
Synthetic polymers, such as polyamide (PA), inherently possess a moderate number of surface functionalities compared to natural polymers, which negatively impacts the uniformity of metallic coatings obtained through wet-chemical methods like electroless plating. The paper presents the use of a siloxane interlayer formed from the condensation of the hydrolyzed 3-triethoxysilylpropyl succinic anhydride (TESPSA) precursor as a strategy to modify the surface properties of polyamide 6.6 (PA66) fabrics and improve the uniformity of the copper surface coating. The application of the siloxane intermediate coating demonstrates a significant improvement in electrical conductivity, up to 20 times higher than fabrics without the interlayer. The morphology of the coatings was investigated using scanning electron (SEM) and laser confocal scanning microscopy (LSM). In addition, dye adsorption, flexural rigidity, air permeability and contact angle measurements were conducted to monitor the change in the PA66 properties after the siloxane functionalization.
Investigation of non-uniformly emitting optical fiber diffusers on the light distribution in tissue
(2020)
Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications
(2019)
Ultrashort pulse laser structuring enables direct modification of glass surfaces to generate superhydrophilic properties for anti-fogging applications. This approach makes coatings dispensable and the generated surfaces remain thermally, mechanically, and chemically resistant. However, the laser-generated structures usually cause scattering, which decreases transmission and may disturb the vision through the modified glass in the dry state. The aim of this study was to find a laser-processing strategy to achieve superhydrophilic, anti-fogging properties on glass surfaces with maximum transmission and minimal visual perception of the generated structure. For this purpose, we used an ultrashort-pulsed laser to generate periodic patterns of rippled circles or rough holes with varying pitch. The water contact angle and transmission of the structured glasses were measured as a function of the structured area. It was found that a periodic pattern of holes, which covers less than 1% of the surface, is already sufficient to reach the superhydrophilic state (contact angle < 5°) and provides nearly the same transmission as pristine glass. Pictures of objects imaged through dry, structured glasses, which were placed close to the lens or object, showed in both cases only a minimal decrease of contrast. If this minor drawback can be accepted, this direct laser structuring approach could be an interesting alternative to coating-based techniques and leaves even room to apply additional coatings for the fabrication of multi-functional special glasses.