Refine
Year of publication
Document Type
- Conference Proceeding (59)
- Article (12)
- Part of a Book (2)
- Book (1)
- Habilitation (1)
Language
- English (74)
- Multiple languages (1)
Keywords
- Y-branch splitter (6)
- arrayed waveguide gratings (6)
- integrated optics (6)
- OCT (5)
- insertion loss (5)
- Arrayed waveguide gratings (4)
- Optical coherence tomography (4)
- Couplers (3)
- Crosstalk (3)
- frequency 100 GHz (3)
In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
Design and optimization of 1x2N Y-branch optical splitters for telecommunication applications
(2020)
This paper presents the design and optimization of 1x2N Y-branch optical splitters for telecom applications. A waveguide channel profile, used in the splitter design, is based on a standard silica-on-silicon material platform. Except for the lengths of the used Y-branches, design parameters such as port pitch between the waveguides and simulation parameters for all splitters were considered fixed. For every Y-branch splitter, insertion loss, non-uniformity, and background crosstalk are calculated. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. Finally, the individual Y-branches are cascade joined to design various Y-branch optical splitters, from 1x2 to 1x64.
Abstract: ams AG is a leading provider of sensing solutions developing semiconductor sensors in a wide variety of fields, with optical sensing as one of the key competences. Since integrated photonics is a promising technology for new sensor systems, ams AG has been developing processes for fully integrated CMOS-compatible photonic components based on Si3N4. This talk will provide an overview on the processing of basic photonic building blocks and their optical properties and performance. We will also give examples for applications in the fields of optical coherence tomography and opto-chemical gas sensing. In the 1980s photonics started its way for common use in telecommunication technology, using optical fiber technologies. In recent years, also a variety of photonic sensors has been proposed and developed. One of the major drawbacks of most of these photonic devices has been the lack of integration into existing (semiconductor) production processes, so far. This integration is feasible using SiN material systems to process monolithically integrated CMOS-compatible photonic sensors in the visible and near-infrared spectrum. We will present the basic processing steps for the SiN photonic technology, the development of some critical processing steps such as SiN deposition and SiN etching as well as several photonic components (waveguides, splitters, etc.) with their optical properties. One of the applications presented relates to optical coherence tomography (OCT), a fast growing imaging technique in ophthalmology. Drawbacks of existing OCT systems are their high costs as well as their bulkiness, which prevents a wider spread use of OCT systems.
One way to overcome both cost and size issues is to integrate optical and electrical components on a single chip.
Part of this work was carried out in the framework of the projects COHESION (funded by the Austrian Research Promotion Agency (FFG), no. 848588), OCTCHIP (funded by the EU’ Horizon 2020 research and innovation programme, no. 688173), and COLODOR (M-ERA.NET transnational Call 2015, funded by the Austrian Research Promotion Agency (FFG), no.854066, and the Bundesministerium für Bildung und Forschung, Germany).