Seyringer, Dana
Refine
Year of publication
Document Type
- Conference Proceeding (59)
- Article (12)
- Part of a Book (2)
- Book (1)
- Habilitation (1)
Language
- English (74)
- Multiple languages (1)
Keywords
- Y-branch splitter (6)
- arrayed waveguide gratings (6)
- integrated optics (6)
- OCT (5)
- insertion loss (5)
- Arrayed waveguide gratings (4)
- Optical coherence tomography (4)
- Couplers (3)
- Crosstalk (3)
- frequency 100 GHz (3)
In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
Design and optimization of 1x2N Y-branch optical splitters for telecommunication applications
(2020)
This paper presents the design and optimization of 1x2N Y-branch optical splitters for telecom applications. A waveguide channel profile, used in the splitter design, is based on a standard silica-on-silicon material platform. Except for the lengths of the used Y-branches, design parameters such as port pitch between the waveguides and simulation parameters for all splitters were considered fixed. For every Y-branch splitter, insertion loss, non-uniformity, and background crosstalk are calculated. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. Finally, the individual Y-branches are cascade joined to design various Y-branch optical splitters, from 1x2 to 1x64.
Introducing 3D sub-micrometer technologies based on polymers opened new possibilities of design and fabrication of photonic devices and components in 3D arrangement. 3D laser lithography is direct writing process based on two photon polymerization exhibiting high accuracy and versatility, where numerous resists and even polymer ceramic mixtures can be used. We present design and simulation of polymer based photonic components with a focus on arrayed waveguide gratings (AWG) based on optical multiplexers/demultiplexers and optical splitters. All optical components were designed for 1550 nm operating wavelength, applying two commercial photonics tools. This study creates a basis for the design of optical components in 3D arrangement, which will be fabricated by 3D laser lithography.
We present the technological verification of a size-optimized 160-channel, 50-GHz silicon nitride-based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm applying our proprietary “AWG-Parameters” tool. For the simulations of AWG layout, the WDM PHASAR photonics tool from Optiwave was used. The simulated results show satisfying optical properties of the designed AWG-spectrometer. However, the high-channel count causes a large AWG size with standard design approaches. To solve this problem we designed a special taper enabling the reduction of AWG structure by about 15% while keeping the same optical properties. The AWG design was fabricated and the measured spectra not only confirm the proposed size-reduction but also the improvement of optical properties of the size-optimized AWG.