Stroj, Sandra
Refine
Year of publication
Document Type
- Article (24)
- Conference Proceeding (9)
Institute
Is part of the Bibliography
- yes (33)
Keywords
- Laser ablation (6)
- Femtosecond laser (2)
- High-speed optical techniques (2)
- Laser beam machining (2)
- Ablation efficiency (1)
- Biosensors (1)
- Burst mode (1)
- Chemical sensors (1)
- Computational fluid dynamics (1)
- Conduction bands (1)
Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 ± 2.7% (concurrence of 87.5 ± 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols.
In recent years, ultrashort pulsed lasers have increased their applicability for industrial requirements, as reliable femtosecond and picosecond laser sources with high output power are available on the market. Compared to conventional laser sources, high quality processing of a large number of material classes with different mechanical and optical properties is possible. In the field of laser cutting, these properties enable the cutting of multilayer substrates with changing material properties. In this work, the femtosecond laser cutting of phosphor sheets is demonstrated. The substrate contains a 230 micrometer thick silicone layer filled with phosphor, which is embedded between two glass plates. Due to the softness and thermal sensitivity of the silicone layer in combination with the hard and brittle dielectric material, the separation of such a material combination is challenging for both mechanical separation processes and cutting with conventional laser sources. In our work, we show that the femtosecond laser is suitable to cut the substrate with a high cutting edge quality. In addition to the experimental results of the laser dicing process, we present a universal model that allows predicting the final cutting edge geometry of a multilayer substrate.
Lead–magnesium niobate lead titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the micro-machining of PMN-PT thin films or bulk substrates. Approaches reported up to date include chemical etching, excimer laser ablation, and ion milling. To ensure an excellent device performance, a key mandatory feature for a micro-machining process is to preserve as far as possible the crystalline quality of the substrates; in other words, the fabrication method must induce a low density of cracks and other kind of defects. In this work, we demonstrate a relatively fast procedure for the fabrication of high-quality PMN-PT micro-machined actuators employing green femtosecond laser pulses. The fabricated devices feature the absence of extended cracks and well-defined edges with relatively low roughness, which is advantageous for the further integration of nanomaterials onto the piezoelectric actuators.
Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications
(2019)
Ultrashort pulse laser structuring enables direct modification of glass surfaces to generate superhydrophilic properties for anti-fogging applications. This approach makes coatings dispensable and the generated surfaces remain thermally, mechanically, and chemically resistant. However, the laser-generated structures usually cause scattering, which decreases transmission and may disturb the vision through the modified glass in the dry state. The aim of this study was to find a laser-processing strategy to achieve superhydrophilic, anti-fogging properties on glass surfaces with maximum transmission and minimal visual perception of the generated structure. For this purpose, we used an ultrashort-pulsed laser to generate periodic patterns of rippled circles or rough holes with varying pitch. The water contact angle and transmission of the structured glasses were measured as a function of the structured area. It was found that a periodic pattern of holes, which covers less than 1% of the surface, is already sufficient to reach the superhydrophilic state (contact angle < 5°) and provides nearly the same transmission as pristine glass. Pictures of objects imaged through dry, structured glasses, which were placed close to the lens or object, showed in both cases only a minimal decrease of contrast. If this minor drawback can be accepted, this direct laser structuring approach could be an interesting alternative to coating-based techniques and leaves even room to apply additional coatings for the fabrication of multi-functional special glasses.