Refine
Year of publication
- 2019 (107) (remove)
Document Type
- Conference Proceeding (47)
- Article (22)
- Master's Thesis (16)
- Part of a Book (12)
- Book (6)
- Doctoral Thesis (1)
- Other (1)
- Periodical (1)
- Part of Periodical (1)
Institute
- Forschungszentrum Mikrotechnik (28)
- Forschungszentrum Business Informatics (17)
- Wirtschaft (13)
- Soziales und Gesundheit (11)
- Forschungszentrum Energie (7)
- Forschungszentrum Nutzerzentrierte Technologien (7)
- Department of Computer Science (5)
- Didaktik (5)
- Forschungszentrum Digital Factory Vorarlberg (3)
- Forschungszentrum Sozial- und Wirtschaftswissenschaften (2)
Keywords
- Constrained Optimization (3)
- silicon nitride (3)
- AAL (2)
- Benin (2)
- Elektromobilität (2)
- Evolution Strategies (2)
- Machine Learning (2)
- Reflexive Kommunikationsprozesse (2)
- Theoretical Analysis (2)
- conically constrained problem (2)
Production and tribological characterization of tailored laser-induced surface 3D microtextures
(2019)
Verbraucherseitige Laststeuerung (Demand Side Management – DSM) wird als ein möglicher Ansatz betrachtet, um die Auswirkungen des Ausbaus von fluktuierenden Erneuerbaren im Stromnetz auszugleichen. Sollen viele verteilte Energiesysteme damit angesprochen werden, stellen zentralistische Ansätze dabei hohe Anforderungen an die Kommunikationsinfrastruktur. Als Alternative wird vielfach eine autonome Laststeuerung (ADSM) mit anreizbasierter Optimierung direkt auf dem Verbrauchergerät betrachtet. Dabei kann die Anreizfunktion mittels unidirektionaler Kommunikation übertragen werden.
Am Forschungszentrum Energie der Fachhochschule Vorarlberg wurden in den letzten Jahren Algorithmen und Prototypen für den Einsatz von ADSM auf verschiedensten verteilten Energiespeichern im elektrischen Stromnetz entwickelt. Dabei werden sowohl thermische Energiespeicher (z. B. Haushalts-Warmwasserspeicher) als auch elektrochemische Speicher (z. B. Batteriespeichersysteme oder Elektroautos) betrachtet. Außerdem werden die Auswirkungen solcher Systeme auf das elektrische Verteilnetz untersucht. Dieser Artikel gibt einen Überblick über die entwickelten Methoden und Ergebnisse aus diesem Forschungsfeld mit dem Ziel, ein weitreichendes Verständnis für die Chancen und Grenzen des ADSM zu schaffen.
Adult muscle carnitine palmitoyltransferase (CPT) II deficiency is a rare autosomal recessive disorder of long-chain fatty acid metabolism. It is typically associated with recurrent episodes of exercise-induced rhabdomyolysis and myoglobinuria, in most cases caused by a c.338C > T mutation in the CPT2 gene. Here we present the pedigree of one of the largest family studies of CPT II deficiency caused by the c.338C > T mutation, documented so far. The pedigree comprises 24 blood relatives
of the index patient, a 32 year old female with genetically proven CPT II deficiency. In total, the mutation was detected in 20 family members, among them five homozygotes and 15 heterozygotes. Among all homozygotes, first symptoms of CPT II deficiency occurred during childhood. Additionally, two already deceased relatives of the index patient were carriers of at least one copy of the genetic variant, revealing a remarkably high prevalence of the c.338C > T mutation within the tested family. Beside the index patient, only one individual had been diagnosed with CPT II deficiency prior to this study and three cases of CPT II deficiency were newly detected by this family study, pointing
to a general underdiagnosis of the disease. Therefore, this study emphasizes the need to raise awareness of CPT II deficiency for correct diagnosis and accurate management of the disease.
Abstract: ams AG is a leading provider of sensing solutions developing semiconductor sensors in a wide variety of fields, with optical sensing as one of the key competences. Since integrated photonics is a promising technology for new sensor systems, ams AG has been developing processes for fully integrated CMOS-compatible photonic components based on Si3N4. This talk will provide an overview on the processing of basic photonic building blocks and their optical properties and performance. We will also give examples for applications in the fields of optical coherence tomography and opto-chemical gas sensing. In the 1980s photonics started its way for common use in telecommunication technology, using optical fiber technologies. In recent years, also a variety of photonic sensors has been proposed and developed. One of the major drawbacks of most of these photonic devices has been the lack of integration into existing (semiconductor) production processes, so far. This integration is feasible using SiN material systems to process monolithically integrated CMOS-compatible photonic sensors in the visible and near-infrared spectrum. We will present the basic processing steps for the SiN photonic technology, the development of some critical processing steps such as SiN deposition and SiN etching as well as several photonic components (waveguides, splitters, etc.) with their optical properties. One of the applications presented relates to optical coherence tomography (OCT), a fast growing imaging technique in ophthalmology. Drawbacks of existing OCT systems are their high costs as well as their bulkiness, which prevents a wider spread use of OCT systems.
One way to overcome both cost and size issues is to integrate optical and electrical components on a single chip.
Part of this work was carried out in the framework of the projects COHESION (funded by the Austrian Research Promotion Agency (FFG), no. 848588), OCTCHIP (funded by the EU’ Horizon 2020 research and innovation programme, no. 688173), and COLODOR (M-ERA.NET transnational Call 2015, funded by the Austrian Research Promotion Agency (FFG), no.854066, and the Bundesministerium für Bildung und Forschung, Germany).
Progress in integrated photonics enables development of integrated photonics circuits with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic integrated circuits is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications.
Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. The effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic integrated circuits optical waveguides with submicron dimensions are necessary. To address these challenges, we present our concept of photonics integrated circuit packaging with radio frequency, direct current and fiber array ports with automated active alignment system.
Lead–magnesium niobate lead titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the micro-machining of PMN-PT thin films or bulk substrates. Approaches reported up to date include chemical etching, excimer laser ablation, and ion milling. To ensure an excellent device performance, a key mandatory feature for a micro-machining process is to preserve as far as possible the crystalline quality of the substrates; in other words, the fabrication method must induce a low density of cracks and other kind of defects. In this work, we demonstrate a relatively fast procedure for the fabrication of high-quality PMN-PT micro-machined actuators employing green femtosecond laser pulses. The fabricated devices feature the absence of extended cracks and well-defined edges with relatively low roughness, which is advantageous for the further integration of nanomaterials onto the piezoelectric actuators.
During two studies the influence of technologies on sleep were analyzed. The first one is about the effect of light on the circadian rhythm and as a consequence on sleep quality of persons in a vegetative state. The second one, which is still running, surveys the influence of several technologies on the sleep of elderly people living in a nursing home.
Analysis of the (μ/μI,λ)-CSA-ES with repair by projection applied to a conically constrained problem
(2019)
A multi-recombinative active matrix adaptation evolution strategy for constrained optimization
(2019)
Varying mindsets in Design Thinking. Why they change during the process and how to nudge them
(2019)
Optical splitters are passive optical components, which have found applications in a wide range of telecom, sensing, medical and many other scientific areas.
Low-index contrast optical splitters (Silica-on-Silicon (SoS) based waveguide devices) feature many advantages such as low fiber coupling losses and low propagation losses. They are considered an attractive DWDM solution in the telecommunication for all optical signal processing in optical communication systems. Nowadays the steadily increasing data volume in communication networks is driven by a rapid proliferation of home-based and business computers, storage capacities, processing capabilities and the extensive availability of Internet. The challenge is to transfer high data volumes in short periods of time over high distances as lossless as possible. The task of the optical splitters in Fiber-to-the-x (FTTx) network is to split one optical signal in many identical signals bringing for example the same TV signal in different households. Of course, the more buildings can be served by one optical splitter the lower are the installation costs.
High-index contrast optical splitters (such as silicon, silicon nitride or polymer based waveguide devices) feature much smaller waveguide size compared to low index contrast splitters. Such compact devices can easily be implemented on-chip and have already been used in the development of optical sensors, devices for DNA diagnostics and for infrared spectroscopy.
We will present the latest achievements in the design of two mostly used optical splitters (MMI and Y-branch) and discuss their advantages and disadvantages. Finally, some applications of the splitters developed in the frame of various projects will be presented.
This work was carried out in the framework of the project PHOCOP (no. SK-AT-2017-0013) and NAMOPRISIN (no. SK-AT-2017-0005) from the Slovak research and development agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and SK 16/2018 and 15/2018 from OeAD-GmbH.
Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications
(2019)
Ultrashort pulse laser structuring enables direct modification of glass surfaces to generate superhydrophilic properties for anti-fogging applications. This approach makes coatings dispensable and the generated surfaces remain thermally, mechanically, and chemically resistant. However, the laser-generated structures usually cause scattering, which decreases transmission and may disturb the vision through the modified glass in the dry state. The aim of this study was to find a laser-processing strategy to achieve superhydrophilic, anti-fogging properties on glass surfaces with maximum transmission and minimal visual perception of the generated structure. For this purpose, we used an ultrashort-pulsed laser to generate periodic patterns of rippled circles or rough holes with varying pitch. The water contact angle and transmission of the structured glasses were measured as a function of the structured area. It was found that a periodic pattern of holes, which covers less than 1% of the surface, is already sufficient to reach the superhydrophilic state (contact angle < 5°) and provides nearly the same transmission as pristine glass. Pictures of objects imaged through dry, structured glasses, which were placed close to the lens or object, showed in both cases only a minimal decrease of contrast. If this minor drawback can be accepted, this direct laser structuring approach could be an interesting alternative to coating-based techniques and leaves even room to apply additional coatings for the fabrication of multi-functional special glasses.
We present the technological verification of a size-optimized 160-channel, 50-GHz silicon nitride-based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm applying our proprietary “AWG-Parameters” tool. For the simulations of AWG layout, the WDM PHASAR photonics tool from Optiwave was used. The simulated results show satisfying optical properties of the designed AWG-spectrometer. However, the high-channel count causes a large AWG size with standard design approaches. To solve this problem we designed a special taper enabling the reduction of AWG structure by about 15% while keeping the same optical properties. The AWG design was fabricated and the measured spectra not only confirm the proposed size-reduction but also the improvement of optical properties of the size-optimized AWG.
Investigations on mechanical stability of laser machined optical fibre tips for medical application
(2019)
Light delivery is a challenging task, when it comes to medical applications. The light is guided through optical fibers from the light source towards the treatment region. In case of interstitial light application, the light has to be decoupled from the fibre and spread to the surrounding tissue. To reach larger tissue volumes, this can be either obtained by adding a scattering volume to the tip of the fibre, or by directly modifying the optical fibre itself in order to break the total reflection within the fibre core. Such modifications can be either on the fibre surface itself or internally in the fibre core. One approach to obtain the fibre structuring could be laser induced surface roughening using an ultrafast laser source. While using volume scattering as diffusor at the fibre tip is currently the gold standard for non-thermal applications (< 0.3W/cm), the decoupling of high power laser intensities for thermal treatment options is still challenging. Structuring the fibre core itself usually is related with a loss of mechanical stability. As fibre breakage and potential loss within the human body can have serious consequences, the mechanical stability is one of the quality criterion in diffuser manufacturing. Therefore, investigations about the mechanical stability of laser manufactured optical fibre diffusers are needed.
In order to evaluate the mechanical stability, a 4-point as well as a 2-point breaking test were developed. Different fibre diffusers, based on volume or surface scattering, were manufactured using fs-laser ablation techniques and its breaking strengths were investigated.
It could be shown that for surface fibre modifications, the mechanical stability reduces with increasing defect depth. The stability significantly drops when the laser ablation was performed in the thermal energy range. Volume scattering modified fibres only showed a slight reduction in stability compared to un-machined fibres.
In conclusion, internal fibre modification seems to be the most promising method to establish optical fibre diffusers, which are capable of several watts of emission power, while preserving its mechanical strength.
Interstitial photodynamic therapy (iPDT) treats malignant brain cancer cells by irradiation with low power laser light. The light is guided into the human body by diffuse emitting fibers. This study targets the light distribution of optical diffusers within the brain tissue. It was shown, that by submerging an optical diffuser into human brain phantom, its radiation profile measured in air converges towards a Gaussian distribution with increasing phantom depth. A camera method using digital averaging filters as well as an integrating sphere setup, both, smoothing the diffuser radiation profile were applied onto the evaluated diffuser.
In contrast to fossil energy sources, the supply by renewable energy sources likewind and photovoltaics can not be controlled. Therefore, flexibilities on the demandside of the electric power grid, like electro-chemical energy storage systems, are usedincreasingly to match electric supply and demand at all times. To control those flex-ibilities, we consider two algorithms that both lead to linear programming problems.These are solved autonomously on the demand side, i.e., by household computers.In the classic approach, an energy price signal is sent by the electric utility to thehouseholds, which, in turn, optimize the cost of consumption within their constraints.Instead of an energy price signal, we claim that an appropriate power signal that istracked in L1-norm as close as possible by the household has favorable character-istics. We argue that an interior point of the household’s feasibility region is neveran optimal price-based point but can result in a L1-norm optimal point. Thus, pricesignals can not parametrize the complete feasibility region which may not lead to anoptimal allocation of consumption.We compare the price and power tracking algorithms over a year on the base ofone-day optimizations regarding different information settings and using a large dataset of daily household load profiles. The computational task constitutes an embarrassingly parallel problem. To this end, the performance of the two parallel computation frameworks DEF [1] and Ray [2] are investigated. The Ray framework is used to run the Python applications locally on several cores. With the DEF frameworkwe execute our Python routines parallelly in a cloud. All in all, the results providean understanding of when which computation framework and autonomous algorithmwill outperform the other.
Verstärkt der Handel mit Agrar-Derivaten die Preisschwankungen von Agrar-Produkten? In der politischen Diskussion wird diese These oft als Grund für eine strenge Reglementierung des Handels mit Agrar-Derivaten angeführt. Hier diskutiere ich die Voraussetzungen, auf denen verschiedene Argumente für diese These beruhen. Eine zentrale Rolle dabei spielen die Begriffe von Gleichgewicht und Selbstreferenz. Diese Begriffe spielen in der Logik und der Physik eine wichtige Rolle, haben aber in der Ökonomie erstaunliche Konsequenzen.
ÖMG Conference 2019
(2019)
In engineering design, optimization methods are frequently used to improve the initial design of a product. However, the selection of an appropriate method is challenging since many
methods exist, especially for the case of simulation-based optimization. This paper proposes a systematic procedure to support this selection process. Building upon quality function deployment, end-user and design use case requirements can be systematically taken into account via a decision
matrix. The design and construction of the decision matrix are explained in detail. The proposed
procedure is validated by two engineering optimization problems arising within the design of box-type boom cranes. For each problem, the problem statement and the respectively applied optimization methods are explained in detail. The results obtained by optimization validate the use
of optimization approaches within the design process. The application of the decision matrix shows the successful incorporation of customer requirements to the algorithm selection.
Breath analysis holds great promise for real-time and non-invasive medical diagnosis. Thus, there is a considerable need for simple-in-use and portable analyzers for rapid detection of breath indicators for different diseases in their early stages. Sensor technology meets all of these demands. However, miniaturized breath analyzers require adequate breath sampling methods. In this context, we propose non-contact sampling; namely the collection of breath samples by exhalation from a distance into a miniaturized collector without bringing the mouth into direct contact with the analyzing device. To evaluate this approach different breathing maneuvers have been tested in a real-time regime on a cohort of 23 volunteers using proton transfer reaction mass spectrometry. The breathing maneuvers embraced distinct depths of respiration, exhalation manners, size of the mouth opening and different sampling distances. Two inhalation modes (normal, relaxed breathing and deep breathing) and two exhalation manners (via smaller and wider lips opening) forming four sampling scenarios were selected. A sampling distance of approximately 2 cm was found to be a reasonable trade-off between sample dilution and requirement of no physical contact of the subject with the analyzer. All four scenarios exhibited comparable measurement reproducibility spread of around 10%. For normal, relaxed inspiration both dead-space and end-tidal phases of exhalation lasted approximately 1.5 s for both expiration protocols. Deep inhalation prolongs the end-tidal phase to about 3 s in the case of blowing via a small lips opening, and by 50% when the air is exhaled via a wide one. In conclusion, non-contact breath sampling can be considered as a promising alternative to the existing breath sampling methods, being relatively close to natural spontaneous breathing.
Stress testing is part of today’s bank risk management and often required by the governing regulatory authority. Performing such a stress test with stress scenarios derived from a distribution, instead of pre-defined expert scenarios, results in a systematic approach in which new severe scenarios can be discovered. The required scenario distribution is obtained from historical time series via a Vector-Autoregressive time series model. The worst-case search, i.e. finding the scenario yielding the most severe situation for the bank, can be stated as an optimization problem. The problem itself is a constrained optimization problem in a high-dimensional search space. The constraints are the box constraints on the scenario variables and the plausibility of a scenario.
The latter is expressed by an elliptic constraint. As the evaluation of the stress scenarios is performed with a simulation tool, the optimization problem can be seen as black-box optimization problem. Evolution Strategy, a well-known optimizer for black-box problems, is applied here. The necessary adaptations to the algorithm are explained and a set of different algorithm design choices are investigated. It is shown that a simple box constraint handling method, i.e. setting variables which violate a box constraint to the respective boundary of the feasible domain, in combination with a repair of implausible scenarios provides good results.
Compact and high-resolution 256-channel silicon nitride based AWG-spectrometer for OCT on a chip
(2019)
We present design, simulation and technological verification of a compact 256-channel, 42-GHz silicon nitride based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm, applying “AWG-Parameters” tool. This design is based on a previous study of various AWG designs (8-channel, 100-GHz; 20-channel, 50-GHz; 40-channel, 50-GHz, 80-channel, 50-GHz and 160-channel, 50-GHz AWGs), which were all technologically verified. The spectrometer features small size and high resolution. It is integrated on OCT chip using standard CMOS processes. The SD-OCT system is developed to operate in a wavelength range from 800 nm to 900 nm, having 0.1 nm resolution.
Ursprünglich wurde für das K-Projekt „LiTech“ eine mobile und intuitive Robotersteuerung – mit Touchbedienung und Augmented Reality – programmiert. Ziel war es, einen Industrieroboter spontan steuern zu können, mit besonderem Augenmerk auf Laienfreundlichkeit. Das System besteht aus einem Roboter und einem PC der als Bildschirm eine mit kapazitivem Touch ausgestattete und von einem Projektor bespielte Glasscheibe hat. Daten werden als String über eine serielle Schnittstelle übermittelt. Zur Erforschung der Nutzerfreundlichkeit werden Bälle auf einer Ebene hin- und herbewegt. Zur Cloud-Datenauswertung und Erstellung der Visualisierung wurden mittlerweile weitere Forschungszentren der FH Vorarlberg eingebunden. Im laufenden Wintersemester arbeitet ein Praktikant aus Südamerika an der Erweiterung auf den kompletten 3D-Raum mit möglicher Implementierung einer Gestensteuerung. Ziel des Beitrags ist es, den Versuchsaufbau und die Steuerung des Roboters zu beschreiben sowie geplante Weiterentwicklungen aufzuzeigen.