Forschungszentrum Mikrotechnik
Refine
Year of publication
Document Type
- Conference Proceeding (131)
- Article (88)
- Part of a Book (3)
- Doctoral Thesis (2)
- Book (1)
- Habilitation (1)
- Other (1)
Institute
- Forschungszentrum Mikrotechnik (227)
- Forschungszentrum Digital Factory Vorarlberg (5)
- Forschung (3)
- Department of Engineering (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (2)
- Forschungszentrum Energie (2)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (1)
- Forschungszentrum Nutzerzentrierte Technologien (1)
Language
- English (221)
- German (5)
- Multiple languages (1)
Keywords
- Laser ablation (11)
- Y-branch splitter (11)
- arrayed waveguide gratings (8)
- integrated optics (6)
- Arrayed waveguide gratings (5)
- OCT (5)
- insertion loss (5)
- photonics (5)
- MMI splitter (4)
- MMI splitters (4)
The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25, 50, 100, 200 and 300 μm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.
In previous studies of linear rotary systems with active magnetic bearings, parametric excitation was introduced as an open-loop control strategy. The parametric excitation was realized by a periodic, in-phase variation of the bearing stiffness. At the difference between two of the eigenfrequencies of the system, a stabilizing effect, called anti-resonance, was found numerically and validated in experiments. In this work, preliminary results of further exploration of the parametric excitation are shared. A Jeffcott rotor with two active magnetic bearings and a disk is investigated. Using Floquet theory, a deeper insight into the dynamic behavior of the system is obtained. Aiming at a further increase of stability, a phase difference between excitation terms is introduced.
In this paper we present various educational activities with Photonics Explorer, an educational kit developed by the photonics research team B - PHOT at VUB (Vrije Universiteit Brussel) for students at secondary schools. The concept is a ‘lab-in-a-box’ that enables students of the 2 nd and 3 rd grade to do photonics experiments themselves at school with lasers, LEDs, lenses, optical fibers, and other high-tech components. Even though, the kit was developed for the secondary schools, we use experiments from the kit also for some other teaching activities such as lectures at the university, photonics workshops for teachers and children at primary/secondary schools or for events such as children's/youth's university or the night of sciences. In the frame of Austrian based project Phorsch! we have organized most of these activities which will be presented here.
A new software tool, called AWG-Wuckler, is developed to calculate geometric parameters of arrayed waveguide grating structures for telecommunication and medical applications. These parameters are crucial for a AWG layout which will be created and simulated using commercial photonic design tools. The design process of AWG is very complex because its geometric dimensions depend on a large number of input design parameters and other input design parameters. Often geometric constraints require an adjustment of the input design parameters and vice versa. Calculation and adjustment of the geometric parameters is a time-consuming process that is currently not fully supported by any commercial photonic tool. AWG-Wuckler tool overcomes this issue and offers a fast and easy to use solution. The tool was already applied in various AWG designs and is technologically well proven.
The paper shows concepts of optical splitting based on three dimensional (3D) optical splitters based on multimode interference principle. This paper is focused on the design, fabrication and characterization of 3D MMI splitter with formed output waveguides based on IP-Dip polymer for direct application on optical fiber. The MMI optical splitter was simulated and fabricated using direct laser writing process. Output characteristics were characterized by highly resolved near-field scanning optical microscope (NSOM) and compared with 3D MMI splitter without output waveguides.
A new software tool, called AWG-Channel-Spacing, is developed to calculate accurate channel spacing of an arrayed waveguide gratings (AWG) optical multiplexer/demultiplexer. This tool has been developed with the application framework QT in the programming language C++. The tool was evaluated with a design of 20-channel 200 GHz AWG. The achieved simulated transmission characteristics prove the correct functionality of the tool.
The paper deals with the optimization of 2x2 optical switch for photonic integrated circuits based on two 2x2 MMI splitters and two phase-modulators. The optical switch was modelled in the RSoftCAD with the simulation tool BeamPROP. The optimization was done to minimise the insertion losses and broaden the spectral band at 1550 nm by using linear tapers in a 2x2 MMI splitter topology. The 2x2 optical switch is a common element for creating more complex 1xN or NxN optical switches in all-optical signal processing.
Semiconducting metal oxides are widely used for solar cells, poto-catalysis, bio-active materials and gas sensors. Besides the material properties of the used semiconductor,the specific surface topology of the sensor determines the device performance. We investigate the preparation and transfer suitable metals onto LIPPS structures on glass for gas sensing applications.
Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensors
(2022)
Microneedle (MN) sensing of biomarkers in interstitial fluid (ISF) can overcome the challenges of self-diagnosis of diseases by a patient, such as blood sampling, handling, and measurement analysis. However, the MN sensing technologies still suffer from poor measurement accuracy due to the small amount of target molecules present in ISF, and require multiple steps of ISF extraction, ISF isolation from MN, and measurement with additional equipment. Here, we present a swellable MN-mounted nanogap sensor that can be inserted into the skin tissue, absorb ISF rapidly, and measure biomarkers in situ by amplifying the measurement signals by redox cycling in nanogap electrodes. We demonstrate that the MN-nanogap sensor measures levodopa (LDA), medication for Parkinson disease, down to 100 nM in an aqueous solution, and 1 μM in both the skin-mimicked gelatin phantom and porcine skin.
Design, simulation, and optimization of the 1×4 optical three-dimensional multimode interference splitter using IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding is demonstrated. The splitter was simulated by using beam propagation method in BeamPROP simulation module of RSoft photonic tool and optimized for an operating wavelength of 1.55 μm . According to the minimum insertion loss, the dimensions of the splitter were optimized for a waveguide with a core size of 4×4 μm2 . The objective of the study is to create the design for fabrication by three-dimensional direct laser writing optical lithography.
Due to the increasing trend of photonic element miniaturisation and the need for optical splitting, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. We present various designs and simulations of various parameters for the optimized MMI splitter. We focus on the possibility of its integration on an optical fiber. The design is focused on a possible production process using 3D laser lithography for the prepared experiments. The MMI splitter was prepared by laser lithography using direct writing process and finally investigated by output characterisation by the near-field measurement.
The production of liquid-gas dispersions places high demands on the process technology, which requires knowledge of the bubble formation mechanisms, as well as the phase parameters of the media combinations used. To obtain the bubble sizes introduced to a flow not knowing the phase parameters, different process parameters are investigated. Their quality and applicability are evaluated. The results obtained make it possible to simplify long design processes of dispersion processes in manufacturing plants and to ensure the product quality of the products manufactured, by reducing waste.
This paper describes two different designs of 1×8 passive optical splitters. The first splitter consists of cascade arranged directional waveguide branches (Y-branch splitter) with (0.8×0.16) µm2 waveguide cross-section. The second splitter is based on multimode interference occurring in a large MMI coupler, which uses a self-imaging effect for beam propagation, exhibiting the same waveguide core size as a Y-branch splitter. The waveguide channel profile, used in both approaches, is based on a silicon nitride material platform, with a refractive index of core being nc = 1.925 and a refractive index of cladding ncl = 1.4575. The splitters are designed as a planar structure for a medical operating wavelength 850 nm. Design, simulation, and optimization of passive optical components are performed by a commercial photonic software tool BeamPROP simulation engine by RSoft Photonics Suite tool, employing beam propagation method. This work aims to find the minimum physical dimensions of the designed splitters with the satisfactory optical performance. According to the minimum insertion loss and minimum non-uniformity, the optimum length of the splitters is determined. Finally, the optical properties of splitters for both approaches are discussed and compared with each other.
Various carbon (nano-) forms, so-called allotropes, have become one of the most supporting activities in fundamental and applied research trends. Therefore, a universal deposition process capable of “adjusting” system parameters in one “deposition chamber” is highly demanding. Here, we present a low-pressure large area deposition system combining radiofrequency (RF) and microwave (MW) plasma in one chamber in different configurations, which offers a wide deposition window for the growth of sp2 carbon (carbon nanotubes, amorphous carbon), a mixture of sp2 and sp3 (diamond-like films) and pure sp3 carbon represented by diamond films. We will show that not only the type of plasma source (RF vs. MW) but also the gas mixture and plasma chemistry are crucial parameters for the controllable and reproducible growth of these allotropes at temperatures from 250 to 800 °C.
The properties of SiC and diamond make them attractive materials for MEMS and sensor devices. We innovated specific laser ablation techniques to fabricate membranes and cantilevers made of SiC or nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates by microwave chemical vapour deposition (MWCVD). We started research to generate surface moulds to grow corrugated diamond films for membranes and cantilevers. A software tool was developed to support the design of micromechanical cantilevers. We can measure deformation and resonant frequency of diamond cantilevers and identify the global mechanical properties. A benchmark against finite element simulations enables an inverse identification of the specific system parameters and simplifies the characterization procedure.
We present 256-channel, 25-GHz AWG designed for ultra-dense wavelength division multiplexing. For the design two in-house developed tools were used: AWG-Parameters tool for the calculation of input design parameters and AWGAnalyser tool, used to evaluate the simulated transmission characteristics. The AWG structure was designed for AWG central wavelength of 1550 nm and simulated with PHASAR tool from Optiwave. To keep the size of AWG structure as small as possible the number of waveguides in the phased array was tested. The simulations show that there is a certain minimum number of phased array waveguides necessary to reach sufficient AWG performance. After optimization, the AWG structure reached 10 cm x 11 cm in size and satisfying optical properties.
This paper aims to study the design, simulation, and optimization of low-loss Y-branch passive optical splitters up to 64 output ports for telecommunication applications. For a waveguide channel profile, the standard material silica-on-silicon is used. The Y-splitters are designed and simulated at telecommunication operating wavelength, λ = 1550 nm. Except for the lengths of the used Y-branches, and a core size of the waveguides, design parameters such as port pitch between the waveguides and simulation parameters for all splitters are considered fixed. The simulation results are analyzed to determine the optimum length of the splitters and the optimum core size. Based on this optimization the total length of the highest designed 1×64 Y-branch splitter was reduced by 41.14 % for a waveguide core (5×5) μm2 compared to the length of splitter with a standard (6×6) μm2 core size.
Deep etched structures in GaAs with high aspect ratio have promising applications in optoelectronics and MEMS devices. The key factors in their fabrication process are the choosing of proper mask material and etching conditions which results in high selectivity and an anisotropic etch profile with smooth sidewalls. In this work, we studied several types of mask materials (Al, Ni, Cr, SiO2) for deep reactive ion etching of GaAs using inductively coupled plasma system. Thus, several sets of experiments were performed with varying gas mixture, pressure and ICP/RF power. As a result, we find optimized conditions and minimal thickness of mask material for achieving deep etched (>140 m) GaAs structures.
In this paper, we document optical splitters based on Y-branch and also on MMI splitting principle. The 1×4 Y-branch splitter was prepared in 3D geometry fully from polymer approaching the single mode transmission at 1550 nm. We also prepared new concept of 1×4 MMI optical splitter. Their optical properties and character of output optical field were measured by near-field scanning optical microscope. Splitting properties and optical outputs of both splitters are very promising and increase an attractiveness of presented 3D technology and polymers.
Arrayed Waveguide Grating (AWG) is a passive optical component, which have found applications in a wide range of photonic applications including telecommunications and medicine. Silica-on-Silicon (SoS) based AWGs use a low refractive-index contrast between the core (waveguide) and the cladding which leads to some significant advantages such as low propagation losses and low fiber coupling losses between the AWG waveguides and the fibres. Therefore, they are an attractive DWDM solution offering higher channel count technology and good performance characteristics compared to other methods. However, the very low refractive-index contrast means the bending radius of the waveguides needs to be very large (on the order of several millimeters) and may not fall below a particular critical value to suppress bending losses. As a result, silica-based waveguide devices usually have a very large size that limits the integration density of SiO2-based photonic integrated devices. High-index contrast AWGs (such as silicon, silicon nitride or polymer-based waveguide devices) feature much smaller waveguide size compared to low index contrast AWGs. Such compact devices can easily be implemented on a chip and have already found applications in emerging applications such as optical sensors, devices for DNA diagnostics and optical spectrometers for infrared spectroscopy.In this work, we present the design, simulation, technological verification and applications of both, the low-index contrast and high-index contrast AWGs. For telecommunication applications AWG-MUX/Demux with up to 128-channels will be presented. For medical applications the AWG-spectrometer with up to 512-channels will be presented.This work was carried out in the framework of the projects: ADOPT No. SK-AT-20-0012, NOVASiN No. SK-AT-20-0017 and AUTOPIC No. APVV-17-0662 from Slovak research and development agency of Ministry of Education, Science, Research and Sport of the Slovak Republic and No. SK 07/2021 and SK 08/2021 from Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH); and project PASTEL, no. 2020-10-15-001, funded by SAIA.
In this paper, low-loss Y-branch splitters up to 128 splitting ratio are designed, simulated, and optimized by using 2D beam propagation method in OptiBPM tool by Optiwave. For an optical waveguide, a silica-on-silicon material platform is used. The splitters were designed as a planar structure for a telecommunication operating wavelength of 1.55 m. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. The influence of the pre-defined S-Bend waveguide shapes (Arc, Cosine, Sine) and of the waveguide core size reduction on the splitter performance has been also studied. The obtained simulation results of all designed splitters with different S-Bend shape waveguides together with the different waveguide core sizes are discussed and compared with each other.
In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system.
Entangled photon generation at 1550 nm in the telecom C-band is of critical importance as it enables the realization of quantum communication protocols over long distance using deployed telecommunication infrastructure. InAs epitaxial quantum dots have recently enabled on-demand generation of entangled photons in this wavelength range. However, time-dependent state evolution, caused by the fine-structure splitting, currently limits the fidelity to a specific entangled state. Here, we show fine-structure suppression for InAs quantum dots using micromachined piezoelectric actuators and demonstrate generation of highly entangled photons at 1550 nm. At the lowest fine-structure setting, we obtain a maximum fidelity of 90.0 ± 2.7% (concurrence of 87.5 ± 3.1%). The concurrence remains high also for moderate (weak) temporal filtering, with values close to 80% (50%), corresponding to 30% (80%) of collected photons, respectively. The presented fine-structure control opens the way for exploiting entangled photons from quantum dots in fiber-based quantum communication protocols.
In this paper, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. The splitter was proposed on the square basis with the width of 20 x 20 µm2 using the IP-Dip polymer as a standard material for 3D laser lithography. We present the optical field distribution in the proposed MMI splitter and its integration possibility on optical fiber. The design is aimed to the possible fabrication process using the 3D laser lithography for forthcoming experiments.
Recently the use of microRNAs (miRNAs) as biomarkers for a multitude of diseases has gained substantial significance for clinical as well as point-of-care diagnostics. Amongst other challenges, however, it holds the central requirement that the concentration of a given miRNA must be evaluated within the context of other factors in order to unambiguously diagnose one specific disease. In terms of the development of diagnostic methods and devices, this implies an inevitable demand for multiplexing in order to be able to gauge the abundance of several components of interest in a patient’s sample in parallel. In this study, we design and implement different multiplexed versions of our electrochemical microfluidic biosensor by dividing its channel into subsections, creating four novel chip designs for the amplification-free and simultaneous quantification of up to eight miRNAs on the CRISPR-Biosensor X (‘X’ highlighting the multiplexing aspect of the device). We then use a one-step model assay followed by amperometric readout in combination with a 2-minute-stop-flow-protocol to explore the fluidic and mechanical characteristics and limitations of the different versions of the device. The sensor showing the best performance, is subsequently used for the Cas13a-powered proof-of-concept measurement of two miRNAs (miRNA-19b and miRNA-20a) from the miRNA-17∼92 cluster, which is dysregulated in the blood of pediatric medulloblastoma patients. Quantification of the latter, alongside simultaneous negative control measurements are accomplished on the same device. We thereby confirm the applicability of our platform to the challenge of amplification-free, parallel detection of multiple nucleic acids.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
In this paper, design of 1×8 multimode interference passive optical splitter is proposed. The structure of the splitter is designed based on a silicon nitride material platform. This work aims to find the minimum physical dimensions of the designed splitters with the satisfactory optical performance. According to the minimum insertion loss and minimum non-uniformity, the optimum length of the splitters is determined.
Today, optics and photonics is widely regarded as one of the most important key technologies for this century. Many experts even anticipate that the 21st century will be century of photon much as the 20th century was the century of electron. Optics and photonics technologies affect almost all areas of our life and cover a wide range of applications in science and industry, e.g. in information and communication technology, in medicine, life science engineering as well as in energy and environmental technology. However even so attractive, the photonics is not well known by most people. To motivate especially young generation for optics and photonics we worked out a lecture related to the “light” for children aged eight to twelve years. We have prepared many experiments to explain the nature of light and its applications in our everyday life. Finally, we focused on the optical data transmission, i.e. how modern communication over optical networks works. To reach many children at home we recorded this lecture and offered it as a video online in the frame of children’s university at Vorarlberg University of Applied Sciences. By combining the hands-on teaching with having a fun while learning about the basic optics concepts we aroused interest of many children with a very positive feedback.
A Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. Progress in integrated photonics enables development of photonic chips with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic chips is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications. One important step of packaging is effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic chip optical waveguide with submicron dimensions. For complex photonic chips, it is necessary to couple not one optical fiber but several optical fibers, which are arranged in fiber arrays. In this case, it is necessary to use a 6D positioning system, which allows to optimally adjust the relative position of the photonic chip and the fiber arrays. After setting the optimal relative position of the photonic chip and the fiber array, the process of their fixation follows. One possibility of fixation is gluing with an adhesive in the optical path between the photonic chip and an array of optical fibers with a refractive index close to the refractive index of the optical fiber core. This paper is focused on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths fixed themselves by UV adhesive in the optical path. The main aims of this works are selection of better adhesive from two types for gluing of photonic chip and fiber array in packaging process of photonics chips and validation of gluing process developing. The coupling and alignment of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 °C to 80 °C in climatic chamber according to Telcordia. Spectral dependence of insertion losses were measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature.
This work was supported by the Slovak Research and Development Agency under the contracts APVV-17-0662 and SK-AT-20-0017 and by the COST Action “European Network for High Performance Integrated Microwave Photonics” (EUIMWP) CA16220.
In recent years, ultrashort pulsed lasers have increased their applicability for industrial requirements, as reliable femtosecond and picosecond laser sources with high output power are available on the market. Compared to conventional laser sources, high quality processing of a large number of material classes with different mechanical and optical properties is possible. In the field of laser cutting, these properties enable the cutting of multilayer substrates with changing material properties. In this work, the femtosecond laser cutting of phosphor sheets is demonstrated. The substrate contains a 230 micrometer thick silicone layer filled with phosphor, which is embedded between two glass plates. Due to the softness and thermal sensitivity of the silicone layer in combination with the hard and brittle dielectric material, the separation of such a material combination is challenging for both mechanical separation processes and cutting with conventional laser sources. In our work, we show that the femtosecond laser is suitable to cut the substrate with a high cutting edge quality. In addition to the experimental results of the laser dicing process, we present a universal model that allows predicting the final cutting edge geometry of a multilayer substrate.
Femtosecond laser ablation on Si generates 2D ripple structures, known as laser induced periodic surface structures (LIPSS) and pinholes. We fabricated membranes with 20 to 50 μm thickness perforated by an array of tapered pinholes up to 5 μm in diameter and 10 to 20 μm spacing. Within several micrometer the pinholes transform into hollow photonic waveguides with constant diameter from 1μm to 2μm. Such structures offer a 3D photonic coupling device for polymer Y-branch- and MMI-splitter. We measured a considerable change of electrical resistivity for 500 ppm H2 in air using Si/SiO2/TiO2 substrates with 2D LIPSS. We propose to investigate 3D waveguide arrays also for photonic-chemical sensors.
In this paper we report on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths. The alignment and gluing of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by UV curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 °C to 80 °C in climatic chamber. Spectral dependence of insertion losses was measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature.
We present design, simulation and optimization of polymer based 16-channel, 100-GHz AWG designed for central wavelength of 1550 nm. The input design parameters were calculated applying AWG-Parameters tool. The simulations were performed applying a commercial photonic tool PHASAR from Optiwave. The achieved transmission characteristics were evaluated by AWG-Analyzer tool and show a satisfying agreement between designed and simulated AWG optical properties. Finally, the influence of the number of phased array (PA) waveguides on the AWG performance was studied. The results show that there is a certain minimum number of PA waveguides necessary to reach sufficient AWG performance.
This paper presents the design, simulation, and optimization of a 1×128 multimode interference (MMI) splitter with a silica-on-silicon channel profile. This work aims to study the influence of the different S-Bend output waveguide shapes at the end of the MMI coupler on the final optical properties. The 1×128 MMI splitters have been simulated using beam propagation method in OptiBPM software. The optical properties of all considered splitters with different shapes of outputs waveguides are discussed and compared with each other. Based on the minimum insertion loss and non-uniformity, the final shape of output waveguides, ensuring the lowest losses, is determined.
An electrochemical study with three redox substances on a carbon based nanogap electrode array
(2020)
Introducing 3D sub-micrometer technologies based on polymers opened new possibilities of design and fabrication of photonic devices and components in 3D arrangement. 3D laser lithography is direct writing process based on two photon polymerization exhibiting high accuracy and versatility, where numerous resists and even polymer ceramic mixtures can be used. We present design and simulation of polymer based photonic components with a focus on arrayed waveguide gratings (AWG) based on optical multiplexers/demultiplexers and optical splitters. All optical components were designed for 1550 nm operating wavelength, applying two commercial photonics tools. This study creates a basis for the design of optical components in 3D arrangement, which will be fabricated by 3D laser lithography.
Investigation of non-uniformly emitting optical fiber diffusers on the light distribution in tissue
(2020)
Comparison of silicon nitride based 1x8 Y-branch splitters applying different waveguide structures
(2019)
This paper presents design, simulation and optimization of 1x8 Y-branch power splitters based on Si/SiO2/SiN/SiOx material platform. For the designs, two different waveguide structures were used, i.e. ridge and rib waveguides. The splitters were designed for 850 nm spectral optical window and the simulations were performed applying FEM and BPM methods in RSoft photonic tool. The aim of this work was to find minimum physical dimensions of the designed splitters occupying minimal space on PIC chip. The optimization was done with regards to high symmetrical splitting ratio and low insertion loss. Finally, the optical properties of both splitters were studied and compared with each other.
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring assensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance incomparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
We present design and simulation of 16-channel, 100-GHz silicon nitride based AWG using BeamPROP simulation engine of RSoft photonic tool. The AWG was designed for TM-polarized light with central wavelength of 850 nm. The input design parameters were calculated applying AWG-Parameters tool. For this purpose, we created a ridge waveguide structure, used in the design of the AWG layout, and performed FEM simulation. The output of the BPM simulation of AWG structure are the transmission characteristics, which was used to calculate transmission parameters defining optical properties of simulated AWG. The achieved simulation results are in a good agreement with the design.
Production and tribological characterization of tailored laser-induced surface 3D microtextures
(2019)
Over the last years, polymers have gained great attention as substrate material, because of the possibility to produce low-cost sensors in a high-throughput manner or for rapid prototyping and the wide variety of polymeric materials available with different features (like transparency, flexibility, stretchability, etc.). For almost all biosensing applications, the interaction between biomolecules (for example, antibodies, proteins or enzymes) and the employed substrate surface is highly important. In order to realize an effective biomolecule immobilization on polymers, different surface activation techniques, including chemical and physical methods, exist. Among them, plasma treatment offers an easy, fast and effective activation of the surfaces by micro/nanotexturing and generating functional groups (including carboxylic acids, amines, esters, aldehydes or hydroxyl groups). Hence, here we present a systematic and comprehensive plasma activation study of various polymeric surfaces by optimizing different parameters, including power, time, substrate temperature and gas composition. Thereby, the highest immobilization efficiency along with a homogenous biomolecule distribution is achieved with a 5-min plasma treatment under a gas composition of 50% oxygen and nitrogen, at a power of 1000 W and a substrate temperature of 80 C. These results are also confirmed by different surface characterization methods, including SEM, XPS and contact angle measurements.
Design and optimization of 1x2N Y-branch optical splitters for telecommunication applications
(2020)
This paper presents the design and optimization of 1x2N Y-branch optical splitters for telecom applications. A waveguide channel profile, used in the splitter design, is based on a standard silica-on-silicon material platform. Except for the lengths of the used Y-branches, design parameters such as port pitch between the waveguides and simulation parameters for all splitters were considered fixed. For every Y-branch splitter, insertion loss, non-uniformity, and background crosstalk are calculated. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. Finally, the individual Y-branches are cascade joined to design various Y-branch optical splitters, from 1x2 to 1x64.
Compact and high-resolution 256-channel silicon nitride based AWG-spectrometer for OCT on a chip
(2019)
We present design, simulation and technological verification of a compact 256-channel, 42-GHz silicon nitride based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm, applying “AWG-Parameters” tool. This design is based on a previous study of various AWG designs (8-channel, 100-GHz; 20-channel, 50-GHz; 40-channel, 50-GHz, 80-channel, 50-GHz and 160-channel, 50-GHz AWGs), which were all technologically verified. The spectrometer features small size and high resolution. It is integrated on OCT chip using standard CMOS processes. The SD-OCT system is developed to operate in a wavelength range from 800 nm to 900 nm, having 0.1 nm resolution.
Lead–magnesium niobate lead titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the micro-machining of PMN-PT thin films or bulk substrates. Approaches reported up to date include chemical etching, excimer laser ablation, and ion milling. To ensure an excellent device performance, a key mandatory feature for a micro-machining process is to preserve as far as possible the crystalline quality of the substrates; in other words, the fabrication method must induce a low density of cracks and other kind of defects. In this work, we demonstrate a relatively fast procedure for the fabrication of high-quality PMN-PT micro-machined actuators employing green femtosecond laser pulses. The fabricated devices feature the absence of extended cracks and well-defined edges with relatively low roughness, which is advantageous for the further integration of nanomaterials onto the piezoelectric actuators.
We present the technological verification of a size-optimized 160-channel, 50-GHz silicon nitride-based AWG-spectrometer. The spectrometer was designed for TM-polarized light with a central wavelength of 850 nm applying our proprietary “AWG-Parameters” tool. For the simulations of AWG layout, the WDM PHASAR photonics tool from Optiwave was used. The simulated results show satisfying optical properties of the designed AWG-spectrometer. However, the high-channel count causes a large AWG size with standard design approaches. To solve this problem we designed a special taper enabling the reduction of AWG structure by about 15% while keeping the same optical properties. The AWG design was fabricated and the measured spectra not only confirm the proposed size-reduction but also the improvement of optical properties of the size-optimized AWG.
Comparison of silicon nitride based 8-channel 100-GHz AWGs applying different waveguide structures
(2019)
This paper presents design and simulation of 8-channel, 100-GHz AWGs based on Si/SiO2/SiN/SiOx material platform. For the designs, two different waveguide structures were used, i.e. ridge and rib waveguides. AWGs were designed for central wavelength of 850 nm applying AWG-Parameters tool. The simulations were performed applying FEM and BPM methods in RSoft and PHASAR photonic tools. The simulation results show considerably lower losses but slightly higher channel crosstalk when applying rib waveguides.
The photonic integrated circuits are required in the next generations of coherent terabit optical communications. The software tools for automated adjustment and coupling of optical fiber arrays to photonic integrated circuits has been developed. The obtained results are needed in final production phase in the technology process of photonic integrated circuits packaging.
Investigations on mechanical stability of laser machined optical fibre tips for medical application
(2019)
Light delivery is a challenging task, when it comes to medical applications. The light is guided through optical fibers from the light source towards the treatment region. In case of interstitial light application, the light has to be decoupled from the fibre and spread to the surrounding tissue. To reach larger tissue volumes, this can be either obtained by adding a scattering volume to the tip of the fibre, or by directly modifying the optical fibre itself in order to break the total reflection within the fibre core. Such modifications can be either on the fibre surface itself or internally in the fibre core. One approach to obtain the fibre structuring could be laser induced surface roughening using an ultrafast laser source. While using volume scattering as diffusor at the fibre tip is currently the gold standard for non-thermal applications (< 0.3W/cm), the decoupling of high power laser intensities for thermal treatment options is still challenging. Structuring the fibre core itself usually is related with a loss of mechanical stability. As fibre breakage and potential loss within the human body can have serious consequences, the mechanical stability is one of the quality criterion in diffuser manufacturing. Therefore, investigations about the mechanical stability of laser manufactured optical fibre diffusers are needed.
In order to evaluate the mechanical stability, a 4-point as well as a 2-point breaking test were developed. Different fibre diffusers, based on volume or surface scattering, were manufactured using fs-laser ablation techniques and its breaking strengths were investigated.
It could be shown that for surface fibre modifications, the mechanical stability reduces with increasing defect depth. The stability significantly drops when the laser ablation was performed in the thermal energy range. Volume scattering modified fibres only showed a slight reduction in stability compared to un-machined fibres.
In conclusion, internal fibre modification seems to be the most promising method to establish optical fibre diffusers, which are capable of several watts of emission power, while preserving its mechanical strength.
We report resent results on the fabrication and characterization of carbon nanogap interdigitated electrode arrays (IDAs) for biosensor applications based on redox cycling. The electrochemical results of the carbon electrodes are compared to our fabricated gold electrodes with similar nanogap distances. The amplification factor and the collection efficiency were recorded by chronoamperometry. Cyclic voltammetry (CV) was utilized to determine the oxidation and reduction potentials as well as for monitoring the electron transfer process. The different deposited carbon materials were characterized by Raman spectroscopy.At present, we successfully fabricated carbon nanogaps down to 80 nm and we are convinced to reach the present fabrication limit of about 30 nm (for gold and platinum electrodes) with carbon as electrode material as well. To the best of our knowledge, this is the first IDA nanogap sensor, which features a gap distance under 100 nm with amorphous carbon as electrode material. Moreover, we present a signal amplification of 32 for carbon electrodes by redox cycling, which is the highest reported amplification so far.
Progress in integrated photonics enables development of integrated photonics circuits with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic integrated circuits is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications.
Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. The effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic integrated circuits optical waveguides with submicron dimensions are necessary. To address these challenges, we present our concept of photonics integrated circuit packaging with radio frequency, direct current and fiber array ports with automated active alignment system.
Optical splitters are passive optical components, which have found applications in a wide range of telecom, sensing, medical and many other scientific areas.
Low-index contrast optical splitters (Silica-on-Silicon (SoS) based waveguide devices) feature many advantages such as low fiber coupling losses and low propagation losses. They are considered an attractive DWDM solution in the telecommunication for all optical signal processing in optical communication systems. Nowadays the steadily increasing data volume in communication networks is driven by a rapid proliferation of home-based and business computers, storage capacities, processing capabilities and the extensive availability of Internet. The challenge is to transfer high data volumes in short periods of time over high distances as lossless as possible. The task of the optical splitters in Fiber-to-the-x (FTTx) network is to split one optical signal in many identical signals bringing for example the same TV signal in different households. Of course, the more buildings can be served by one optical splitter the lower are the installation costs.
High-index contrast optical splitters (such as silicon, silicon nitride or polymer based waveguide devices) feature much smaller waveguide size compared to low index contrast splitters. Such compact devices can easily be implemented on-chip and have already been used in the development of optical sensors, devices for DNA diagnostics and for infrared spectroscopy.
We will present the latest achievements in the design of two mostly used optical splitters (MMI and Y-branch) and discuss their advantages and disadvantages. Finally, some applications of the splitters developed in the frame of various projects will be presented.
This work was carried out in the framework of the project PHOCOP (no. SK-AT-2017-0013) and NAMOPRISIN (no. SK-AT-2017-0005) from the Slovak research and development agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and SK 16/2018 and 15/2018 from OeAD-GmbH.
In this study, we carried out the structural and thermal characterization of a medical-grade poly (lactide) (PLA) by SEC, TGA, DSC, NMR, ICP-MS and Py-GC/MS. Moreover, we investigated the laser-induced degradation occurring when ultrashort laser pulses (ULP) were employed to cut extremely thin polymer films prepared by solvent-casting. ULP polymer cutting technology is an interesting manufacturing process for its advantages in potential medical applications. In fact, heat transmission to the region surrounding the cuts is limited, so that the incisions are precise and the effects on the regions around them are small. In this way, the need for post-processing is reduced and ULP cutting becomes interesting for industrial applications. However, degradation induced by ULP may occur and compromise the properties of the polymer samples. To investigate this possibility, portions of PLA films, ultrashort laser cut (ULC) and uncut, were analysed by SEC, DSC, NMR and FTIR. Furthermore, PLA oligomers were studied by ESI-MS. Both SEC and NMR showed a decrease in the molecular weight. FTIR, ESI-MS and NMR spectra revealed the presence of olefin end groups originated from a \beta-H transfer mechanism, induced by heat and/or light (Norrish II mechanism). Additionally, the inspection of the ESI mass spectra highlighted the cleavage of ester bonds related to the Norrish I type mechanism, undetected by the other techniques.
SiN is a suitable material for fabricating of photonic integrated circuits with middle refractive index contrast for the visible and near infrared spectral region with ultra-low propagation losses. The paper deals with the design and simulation of fiber to SiN chip butt coupler with single step fabrication process without thickness tapering. Coupler is designed for 850 nm band for coupling between strip 0.25 μm × 1.00 μm waveguide and Nufern's 780-OCT single mode optical fiber with core diameter 4.4 μm. The coupling losses simulation results of the two simulation methods finite-difference beam propagation techniques and eigenmode expansion method are compared.
Abstract: ams AG is a leading provider of sensing solutions developing semiconductor sensors in a wide variety of fields, with optical sensing as one of the key competences. Since integrated photonics is a promising technology for new sensor systems, ams AG has been developing processes for fully integrated CMOS-compatible photonic components based on Si3N4. This talk will provide an overview on the processing of basic photonic building blocks and their optical properties and performance. We will also give examples for applications in the fields of optical coherence tomography and opto-chemical gas sensing. In the 1980s photonics started its way for common use in telecommunication technology, using optical fiber technologies. In recent years, also a variety of photonic sensors has been proposed and developed. One of the major drawbacks of most of these photonic devices has been the lack of integration into existing (semiconductor) production processes, so far. This integration is feasible using SiN material systems to process monolithically integrated CMOS-compatible photonic sensors in the visible and near-infrared spectrum. We will present the basic processing steps for the SiN photonic technology, the development of some critical processing steps such as SiN deposition and SiN etching as well as several photonic components (waveguides, splitters, etc.) with their optical properties. One of the applications presented relates to optical coherence tomography (OCT), a fast growing imaging technique in ophthalmology. Drawbacks of existing OCT systems are their high costs as well as their bulkiness, which prevents a wider spread use of OCT systems.
One way to overcome both cost and size issues is to integrate optical and electrical components on a single chip.
Part of this work was carried out in the framework of the projects COHESION (funded by the Austrian Research Promotion Agency (FFG), no. 848588), OCTCHIP (funded by the EU’ Horizon 2020 research and innovation programme, no. 688173), and COLODOR (M-ERA.NET transnational Call 2015, funded by the Austrian Research Promotion Agency (FFG), no.854066, and the Bundesministerium für Bildung und Forschung, Germany).
Transparent laser-structured glasses with superhydrophilic properties for anti-fogging applications
(2019)
Ultrashort pulse laser structuring enables direct modification of glass surfaces to generate superhydrophilic properties for anti-fogging applications. This approach makes coatings dispensable and the generated surfaces remain thermally, mechanically, and chemically resistant. However, the laser-generated structures usually cause scattering, which decreases transmission and may disturb the vision through the modified glass in the dry state. The aim of this study was to find a laser-processing strategy to achieve superhydrophilic, anti-fogging properties on glass surfaces with maximum transmission and minimal visual perception of the generated structure. For this purpose, we used an ultrashort-pulsed laser to generate periodic patterns of rippled circles or rough holes with varying pitch. The water contact angle and transmission of the structured glasses were measured as a function of the structured area. It was found that a periodic pattern of holes, which covers less than 1% of the surface, is already sufficient to reach the superhydrophilic state (contact angle < 5°) and provides nearly the same transmission as pristine glass. Pictures of objects imaged through dry, structured glasses, which were placed close to the lens or object, showed in both cases only a minimal decrease of contrast. If this minor drawback can be accepted, this direct laser structuring approach could be an interesting alternative to coating-based techniques and leaves even room to apply additional coatings for the fabrication of multi-functional special glasses.
Here we present the highly sensitive detection of dopamine using gold nanogap IDAs with redox-cycling amplification. Through the combination with a facile electrochemical activation and a chronoamperometric multistep protocol fouling of the gold electrode surface can be prevented and a sensitivity of 14 nA μM -1 with excellent linearity up to 10 μM is achieved. The low-cost and reproducible wafer level fabrication process of the nanogap IDAs plays a key role. Electrode and substrate materials can be nearly arbitrarily chosen. Also the gap sizes could be adjusted down to sub-100 nm dimensions with this versatile approach, allowing for very high signal amplification. In comparison to the current gold standard, fastscan cyclic voltammetry (FSCV) with carbon fiber microelectrodes (CFMEs), which suffers from high background currents, no elaborate data processing and high-end electronic equipment is needed. Employing our flexible, easy and inexpensive method, DA monitoring with a short acquisition period and a detection limit less than 200 nM is successfully demonstrated.
Interstitial photodynamic therapy (iPDT) treats malignant brain cancer cells by irradiation with low power laser light. The light is guided into the human body by diffuse emitting fibers. This study targets the light distribution of optical diffusers within the brain tissue. It was shown, that by submerging an optical diffuser into human brain phantom, its radiation profile measured in air converges towards a Gaussian distribution with increasing phantom depth. A camera method using digital averaging filters as well as an integrating sphere setup, both, smoothing the diffuser radiation profile were applied onto the evaluated diffuser.