Forschung
Refine
Document Type
- Conference Proceeding (5)
- Article (1)
Institute
Language
- English (6)
Is part of the Bibliography
- yes (6)
Keywords
This paper describes two different designs of 1×8 passive optical splitters. The first splitter consists of cascade arranged directional waveguide branches (Y-branch splitter) with (0.8×0.16) µm2 waveguide cross-section. The second splitter is based on multimode interference occurring in a large MMI coupler, which uses a self-imaging effect for beam propagation, exhibiting the same waveguide core size as a Y-branch splitter. The waveguide channel profile, used in both approaches, is based on a silicon nitride material platform, with a refractive index of core being nc = 1.925 and a refractive index of cladding ncl = 1.4575. The splitters are designed as a planar structure for a medical operating wavelength 850 nm. Design, simulation, and optimization of passive optical components are performed by a commercial photonic software tool BeamPROP simulation engine by RSoft Photonics Suite tool, employing beam propagation method. This work aims to find the minimum physical dimensions of the designed splitters with the satisfactory optical performance. According to the minimum insertion loss and minimum non-uniformity, the optimum length of the splitters is determined. Finally, the optical properties of splitters for both approaches are discussed and compared with each other.
A new software tool, called AWG-Wuckler, is developed to calculate geometric parameters of arrayed waveguide grating structures for telecommunication and medical applications. These parameters are crucial for a AWG layout which will be created and simulated using commercial photonic design tools. The design process of AWG is very complex because its geometric dimensions depend on a large number of input design parameters and other input design parameters. Often geometric constraints require an adjustment of the input design parameters and vice versa. Calculation and adjustment of the geometric parameters is a time-consuming process that is currently not fully supported by any commercial photonic tool. AWG-Wuckler tool overcomes this issue and offers a fast and easy to use solution. The tool was already applied in various AWG designs and is technologically well proven.
Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.
We present 256-channel, 25-GHz AWG designed for ultra-dense wavelength division multiplexing. For the design two in-house developed tools were used: AWG-Parameters tool for the calculation of input design parameters and AWGAnalyser tool, used to evaluate the simulated transmission characteristics. The AWG structure was designed for AWG central wavelength of 1550 nm and simulated with PHASAR tool from Optiwave. To keep the size of AWG structure as small as possible the number of waveguides in the phased array was tested. The simulations show that there is a certain minimum number of phased array waveguides necessary to reach sufficient AWG performance. After optimization, the AWG structure reached 10 cm x 11 cm in size and satisfying optical properties.